1. The bladder is made up of four layers; The serous, this is the outer layer that is an existing layer coming from the peritoneum (Kuchel and Hof, 2004). The detrusor muscle is part of the bladder wall, comprising of three layers together with longitudinal and circularly organised muscle fibres (Kuchel and Hof, 2004). The sub-mucous is a fine layer of connective tissue loosely connecting the muscular layer to the mucous layer (Kuchel and Hof, 2004). The mucous is the deepest layer of the wall of the bladder, which is loosely connected to the muscular layer (Kuchel and Hof, 2004). Once the bladder is empty or almost empty the mucosa cascades into numerous folds this is known as rugae (Kuchel and Hof, 2004).The function of the urinary bladder is to store urine before its removal from the body (Kuchel and Hof, 2004). During urination the bladder transports urine into the urethra, resulting in urine exiting the body (Kuchel and Hof, 2004). A small circular muscle at the entrance of the bladder closes the opening to the bladder when ejaculation occurs, so you it’s impossible to urinate whilst ejaculating (Kuchel and Hof, 2004). Elastic fibers and involuntary muscle fibers are in the wall of the urinary bladder these assist in its functions of enlarging to hold different amounts of urine and then contracting to empty (Kuchel and Hof, 2004).

2. The seminal vesicles consists of tubules these consist of three layers; the inner lining which is a folded mucous membrane, a muscle layer and a fibrous external layer which covers the elastic tissue (Rosdahl and Kowalski, 2008). Responsible for secreting the thick fluid made by the seminal vesicles is the mucous membrane (Rosdahl and Kowalski, 2008). In the process of ejaculation, the muscular tissue together with the elastic fibers contract to empty the vesicle’s volume into the ejaculatory ducts (Rosdahl and Kowalski, 2008).

3. The prostate is split into anatomical lobes, the inferoposterior, inferolateral, superomedial, and anteromedial by the urethra as they go through the organ (Patton and Thibodeau, 2016). The prostate secrets a thin fluid which contributes to the seminal fluid volume, this fluid encourages the spermatozoon motivation and sustains their motility (Patton and Thibodeau, 2016).

4.The Cowper’s glands are two small exocrine glands which are made up of
numerous lobules being kept together by a fibrous casing (Thibodeau and Patton (2013). Each duct gland opens into the penile area of the urethra which is at the bottom of the penis (Thibodeau and Patton (2013). Its function is to production of pre-ejaculate (Thibodeau and Patton (2013). This thick secretion is initiated by sexual arousal it aids in lubricating the urethra to enable spermatozoa to travel and neutralize any form of urine that’s acidic within the urethra (Thibodeau and Patton (2013).

5. There are three layers of the urethra, the muscular, erectile, and mucous, the muscular layer just being an extension of the bladder (McAnulty and Burnette (2006). The urethra allows urine to be emptied through it as well as semen during the ejaculation process (McAnulty and Burnette (2006). In men the urethra is split into four parts Pre-prostatic urethra, Prostatic urethra, Membranous urethra and Spongy urethra named after their location (McAnulty and Burnette (2006). The function of the urethra is to provide an exit for urine and semen during ejaculation (McAnulty and Burnette (2006).

6. Vas deferens are miniscule muscular tubes, these transport spermatozoon from the epididymis to the ejaculatory duct awaiting ejaculation (McAnulty and Burnette (2006). It is the transport system for the movement of spermatozoon (McAnulty and Burnette (2006). When ejaculation occurs a smooth muscle in the walls of the vas deferens contracts instantly, enabling the spermatozoon to be propelled forward (McAnulty and Burnette (2006).

7. There are three parts of the epididymis; the head, the body and the tail. It is in the form of a narrow, coiled tube connecting the efferent ducts from the rear of each testis to its vas deferens (Haschek et al., 2017).The sheer length of the epididymis allows storage space for the spermatozoon along with time to mature before they are realised (Haschek et al., 2017).The epididymis additional function is to absorb fluid along with adding substances to the seminal fluid to sustain the maturing spermatozoa (Haschek et al., 2017).

8. The testis are an organ which lies within the scrotum. Each testicle is encased by a tough fibrous capsule known as the tunica albuginea (Haschek et al., 2017). A number of fibrous septa divide the organ into lobules (Haschek et al., 2017). There are one to three coiled tubules referred to as the seminiferous tubules, in each lobule. These open into a system named the rete testis (Haschek et al., 2017). Little efferent ductules, join the rete testis to epididymis. Production of spermatozoa and androgens is the testis initial function (Haschek et al., 2017). A man never stops producing spermatozoa throughout his lifetime, and from one ejaculation thousands of spermatozoa can be produced (Haschek et al., 2017). Testis are also responsible for realising testosterone (Haschek et al., 2017).

9. The Scrotal sac is a fine external sac of skin, this splits into two parts, each part containing one of the two testes, glands responsible for producing spermatozoa and the epididymis which stores the spermatozoa (Haschek et al., 2017). Its function is to protect and enable enough time for spermatozoa to mature before exit whilst keeping a cool environment for the testis (Haschek et al., 2017).